Amenability and Weak Amenability of Triangular Banach Algebras

Authors

  • A. R. Medghalchi
  • M. H. Sattari
  • T. Yazdanpanah
Abstract:

This article doesn't have abstract

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

amenability of banach algebras

chapters 1 and 2 establish the basic theory of amenability of topological groups and amenability of banach algebras. also we prove that. if g is a topological group, then r (wluc (g)) (resp. r (luc (g))) if and only if there exists a mean m on wluc (g) (resp. luc (g)) such that for every wluc (g) (resp. every luc (g)) and every element d of a dense subset d od g, m (r)m (f) holds. chapter 3 inv...

15 صفحه اول

Homomorphism Weak amenability of certain Banach algebras

In this paper we introduce the notion of $varphi$-commutativity for a Banach algebra $A$, where $varphi$ is a continuous homomorphism on $A$ and study the concept of $varphi$-weak amenability for $varphi$-commutative Banach algebras. We give an example to show that the class of $varphi$-weakly amenable Banach algebras is larger than that of weakly amenable commutative Banach algebras. We charac...

full text

$(-1)$-Weak Amenability of Second Dual of Real Banach Algebras

Let $ (A,| cdot |) $ be a real Banach algebra, a complex algebra $ A_mathbb{C} $ be a complexification of $ A $ and $ | | cdot | | $ be an algebra norm on  $ A_mathbb{C}  $  satisfying a simple condition together with the norm $ | cdot | $ on $ A$.  In this paper we first show that $ A^* $ is a real Banach $ A^{**}$-module if and only if $ (A_mathbb{C})^* $ is a complex Banach $ (A_mathbb{C})^{...

full text

Weak Amenability and 2-weak Amenability of Beurling Algebras

Let Lω(G) be a Beurling algebra on a locally compact abelian group G. We look for general conditions on the weight which allows the vanishing of continuous derivations of Lω(G). This leads us to introducing vector-valued Beurling algebras and considering the translation of operators on them. This is then used to connect the augmentation ideal to the behavior of derivation space. We apply these ...

full text

Semi-amenability and Connes Semi-amenability of Banach Algebras

Let A be a Banach algebra and X a Banach A-bimodule, the derivation D : A → X is semi-inner if there are ξ, μ ∈ X such that D(a) = a.ξ − μ.a, (a ∈ A). A is called semi-amenable if every derivation D : A → X∗ is semi-inner. The dual Banach algebra A is Connes semi-amenable (resp. approximately semi-amenable) if, every D ∈ Z1w _ (A,X), for each normal, dual Banach A-bimodule X, is semi -inner (re...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 31  issue No. 2

pages  57- 69

publication date 2011-01-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023